

ENVIRONMENTAL PRODUCT DECLARATION

Conforme a ISO 14025 e EN15804+A2:2019

ACCIAI PER L'EDILIZIA RETE ELETTROSALDATA, TRALICCIO

Program operator: EPDITALY
Pubblicato da: EPDITALY

Dichiarazione n.: EPDrete&traliccio_2020

Cod. di registrazione EPDITALY: EPDITALY0130

Pubblicato il: 21/12/2020
Aggiornato il: 11/01/2022
Valido fino al: 21/12/2025
Unità produttiva: Osoppo (UD)

Informazioni generali

PROPRIETARIO DELLA DICHIARAZIONE EPD:

FERRIERE NORD S.p.A. Zona industriale Rivoli di Osoppo Osoppo (UD), Italia.

PROGRAM OPERATOR:

EPDITALY Via Gaetano de Castillia 10 Milano (MI), Italia.

VERIFICA INDIPENDENTE SVOLTA DA:

ICMQ S.p.A. Via Gaetano de Castillia 10 Milano (MI), Italia.

LOCALIZZAZIONE DELL'IMPIANTO:

FERRIERE NORD S.p.A. Zona industriale Rivoli di Osoppo Osoppo (UD), Italia.

Informazioni generali

Dichiarazioni ambientali pubblicate all'interno della stessa categoria di prodotto, ma provenienti da programmi differenti, potrebbero non essere confrontabili. In particolare EPD di prodotti da costruzione possono non essere confrontabili se non conformi alla EN 15804.

DOCUMENTI DI RIFERIMENTO: La presente dichiarazione è stata sviluppata seguendo il documento di General Programme Instruction di EPDItaly, disponibile al sito www.epditaly.it.

ICMQ-001/15 PCR per i prodotti da costruzione rev.3

CODICE CPC: 4124

CONTATTO AZIENDALE: dott. Carlo Ceschia

Ferriere Nord S.p.A., Tel 0432 062850, carlo.ceschia@pittini.it

SUPPORTO TECNICO: Spin Life s.r.l., via E. degli Scrovegni 29, 35131

Padova

VERIFICA INDIPENDENTE DELLA DICHIARAZIONE E DEI DATI SVOLTA SECONDO ISO 14025

☐ EPD Process certification (Internal)

Profilo aziendale

Il Gruppo Pittini con oltre 60 anni di esperienza nel settore siderurgico è un riferimento internazionale nella produzione di **acciai lunghi** destinati al mercato dell'**edilizia** e della **meccanica**.

Con una produzione annua di circa 3 milioni di tonnellate, 18 strutture produttive e di servizio logistico e 1.800 collaboratori, il Gruppo Pittini è una solida realtà industriale orientata ad una costante crescita, guidata da investimenti ad alto contenuto tecnologico, dall'innovazione di prodotto e da un'attenta politica di sostenibilità ambientale (**Sistema di Gestione Ambientale** certificato secondo lo Standard ISO 14001 dal 2009).

Il Gruppo Pittini **copre l'intero ciclo produttivo**: dalla materia prima (materiali ferrosi riciclati) al prodotto finito, con la produzione di billette, vergelle e tondi laminati per cemento armato in barre e rotoli.

✓	A1	Approvvigionamento delle materie prime	
✓	A2	Trasporto	FASE DI PRODUZIONE
✓	А3	Fabbricazione	
MND	A4	Trasporto al luogo di utilizzo	FASE DI COSTRUZIONE
MND	A5	Messa in opera	TAGE DI COSTRUZIONE
MND	B1	Utilizzo	
MND	B2	Manutenzione	
MND	В3	Riparazione	
MND	B4	Sostituzione	FASE DI UTILIZZO
MND	B5	Ristrutturazione	
MND	B6	Consumo di energia durante l'utilizzo	
MND	B7	Consumo di acqua durante l'utilizzo	
/	C1	De-costruzione \ Demolizione	
/	C2	Trasporto al luogo di trattamento	FASE DI FINE VITA
✓	C3	Trattamento rifiuto	FASE DI FINE VII A
✓	C4	Smaltimento	
✓	D	Riutilizzo \ Recupero \ Riciclo	BENEFICI E CARICHI OLTRE IL CONFINE DEL SISTEMA

MODULI: I confini del sistema includono i moduli obbligatori A1, A2, A3, C1, C2, C3, C4 e D previsti dallo standard EN 15804 secondo un'applicazione di tipo "from cradle to gate with modules C1-C4 and D".

TIPO DI EPD: Questa dichiarazione è specifica per i prodotti rete elettrosaldata e traliccio, realizzati presso lo stabilimento di Osoppo (UD).

LOCALIZZAZIONE GEOGRAFICA:

Le prestazioni sono state calcolate in riferimento all'impianto di Osoppo. Il mercato di riferimento è Nazionale.

DATABASE: Ecoinvent 3.6

SOFTWARE: SimaPro 9.1

Il prodotto: rete elettrosaldata

UNITÀ DICHIARATA: 1000 kg di rete elettrosaldata

Il processo di industrializzazione delle armature ha portato allo sviluppo delle reti elettrosaldate con conseguente velocità, facilità esecutiva e contenimento dei costi del cantiere in fase realizzativa di una costruzione.

Il Gruppo Pittini è il **primo produttore italiano di rete elettrosaldata** e grazie ai suoi 3 stabilimenti sul territorio nazionale, unito ad un'esperienza di oltre 60 anni, assicura un prodotto di alta qualità grazie anche ai continui investimenti atti al raggiungimento del massimo livello tecnologico degli impianti.

Il Gruppo Pittini produce una vasta gamma di reti elettrosaldate, realizzate con **acciaio HD – High Ductility** – con caratteristiche di alta qualità garantita dai severi controlli effettuati durante l'intera filiera che parte dall'attento esame del rottame, materia prima. Grazie alla ramificata rete di vendita, assicura una capillare assistenza commerciale e tecnica.

sostanze

Nella rete elettrosaldata prodotta ad Osoppo non sono presenti sostanze incluse nella "Candidate list of substances of very high concern (SVHC)".

Il prodotto: traliccio

UNITÀ DICHIARATA: 1000 kg di traliccio

Il Gruppo Pittini è stato il primo ad introdurre nel mercato dell'edilizia il **traliccio elettrosaldato**, prodotto che ha contribuito in maniera significativa all'industrializzazione dell'edilizia moderna.

Il traliccio elettrosaldato del Gruppo Pittini si caratterizza per l'ampia gamma, per l'elevata qualità e per la competente assistenza tecnica. Questi sono impiegati per la realizzazione di travetti tralicciati – utilizzati nei solai in laterocemento o in calcestruzzo – di lastre tralicciate – utilizzati negli impalcati da ponte, nei grandi solai monolitici o alleggeriti – e di doppie lastre – utilizzate per la realizzazione di setti in cemento armato in zona sismica, dei muri di sostegno e dei muri di tamponamento.

La diffusione in ambito infrastrutturale è dovuta oltre alla velocità e sicurezza nella posa in cantiere, all'eliminazione anche completa del banchinaggio per la realizzazione del getto di completamento, motivo principale per cui vengono ampiamente utilizzati nella realizzazione degli **impalcati dei ponti**.

Nel traliccio prodotto ad Osoppo non sono presenti sostanze incluse nella "Candidate list of substances of very high concern (SVHC)".

Le principali materie prime

Le principali materie prime utilizzate per la produzione della rete e del traliccio sono:

ROTTAME FERROSO
è il principale materiale utilizzato

GHISA

FERRO PRERIDOTTO

FERROLEGHE

CALCE

CARBONE

REFRATTARI

DESCRIZIONE DEI PROCESSI INCLUSI:

Sono stati inclusi i **trasporti dei materiali dal sito di produzione** al sito di Osoppo presso Ferriere Nord S.p.a. Tutti i **trasporti dei rottami e delle materie prime dai fornitori** all'impianto di Osoppo sono inclusi nel modello con informazioni di tipo primario. La **QUANTITÀ D'INVENTARIO**, espressa in kgkm, è definita come il prodotto tra la massa del materiale e la distanza percorsa. Anche i **trasporti degli scarti dallo stabilimento di Osoppo** verso gli impianti di trattamento sono inclusi nel modello sulla base di dati primari.

Sono inclusi i **processi di lavorazione dei materiali** in ingresso a Ferriere Nord, il **processo di fusione e le lavorazioni** per ottenere la rete elettrosaldata e il traliccio.

- A1 APPROVVIGIONAMENTO MATERIALI E ENERGIA
- A2 TRASPORTI
- A3 FABBRICAZIONE (TRATTAMENTO DEI RIFIUTI PRODOTTI, MATERIALI AUSILIARI, EMISSIONI)

A seguito dell'aggiornamento dello Standard 15804 sono stati inclusi i gruppi C1, C2, C3, C4 e D.

I gruppi C1-C4 comprendono gli impatti associati alla rimozione del prodotto dall'edificio nel quale è installato, al trasporto dei rifiuti verso il centro di trattamento/smaltimento e alle attività correlate (incenerimento, riciclo ecc.), compreso lo smaltimento in discarica.

Il gruppo D, invece, riporta i benefici derivanti dagli output dei processi di riciclo (intesi come prodotti evitati) e recupero energetico.

- C1 DE-COSTRUZIONE/DEMOLIZIONE
- C2 TRASPORTO AL LUOGO DI TRATTAMENTO
- C3 TRATTAMENTO RIFIUTI
- C4 SMALTIMENTO
- D RIUTILIZZO/RECUPERO/RICICLO

PROCESSI DI
PREPARAZIONE ALLA
FUSIONE IN FORNO
DEL ROTTAME ED
ESTRAZIONE DELLE
MATERIE PRIME

Lavorazioni del rottame, della ghisa e del preridotto:

trattamento meccanico del rottame, pesatura, stoccaggio, preparazione ceste, movimentazione con carriponte per invio al forno;

Lavorazioni dei carboni e della calce:

pesatura, insufflazione per invio al forno;

Lavorazioni refrattari e elettrodi:

pesatura e invio al forno;

Lavorazione scoria siviera con ferro:

raffreddamento, deferrizzazione, vagliatura, trasporto pneumatico e invio al forno tramite iniezione.

Processo di fusione:

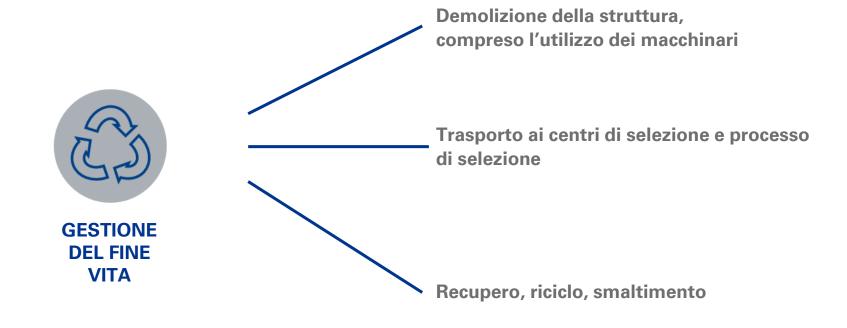
produzione di ossigeno, ricircolo acqua di raffreddamento, fusione ad arco elettrico;

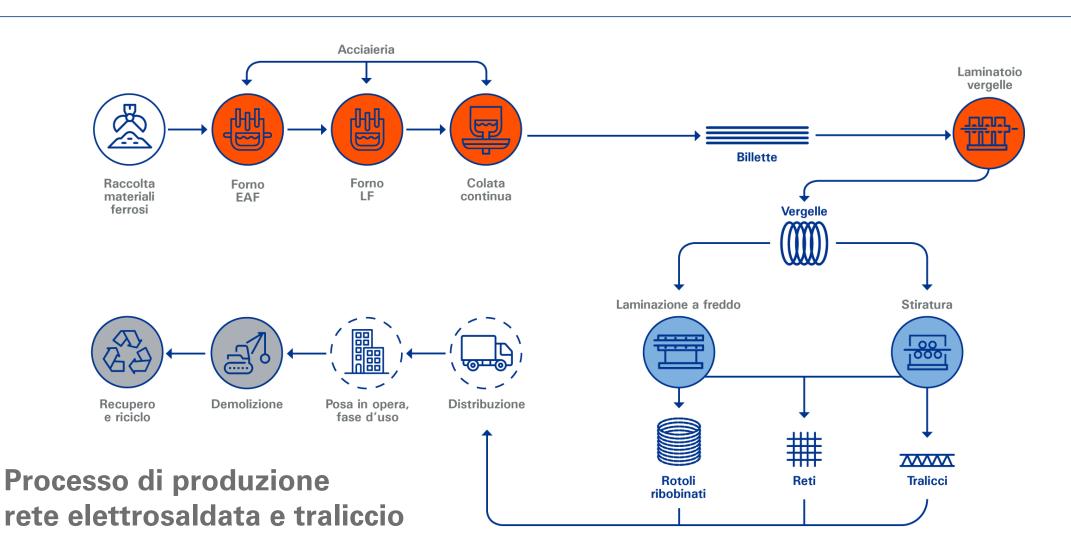
Processo di metallurgia secondaria:

affinazione ed aggiunta degli additivi, lavorazioni delle ferroleghe (pesatura e invio al forno secondario), preparazione e manutenzione delle siviere;

Processo di colata:

colaggio dell'acciaio e formazione delle billette, preparazione e manutenzione delle paniere.





Dati riferiti a 1000 kg di rete elettrosaldata

PARAMETRI D'IMPATTO AMBIENTALE	UNITÀ	A1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D	TOTALE A1÷C4
Climate Change	kg CO2 eq	566,9	41,9	107,7	MND	6,4	16,7	1,7	0,9	-716,5	742,3
Climate Change - Fossil	kg CO2 eq	557,8	41,8	107,6	MND	6,4	16,7	1,6	0,9	-719,7	732,9
Climate Change - Biogenic	kg CO2 eq	8,9339	0,0651	0,0612	MND	0,0018	0,0090	0,0485	0,0009	3,3769	9,1203
Climate Change – LU&T	kg CO2 eq	0,2055	0,0252	0,0015	MND	0,0005	0,0058	0,0036	0,0003	-0,1286	0,2424
Ozone Depletion	kg CFC11 eq	0,0000989	0,0000085	0,0000008	MND	0,0000014	0,0000038	0,0000001	0,0000003	-0,0000287	0,0001138
Acidification	mol H+ eq	2,766	0,613	0,025	MND	0,067	0,114	0,010	0,007	-3,048	3,602
Eutrophication Aquatic Freshwater	kg P eq	0,15245	0,00569	0,00087	MND	0,00023	0,00122	0,00154	0,00007	-0,26522	0,16207
Eutrophication Aquatic Marine	kg N eq	0,508	0,179	0,026	MND	0,030	0,044	0,002	0,003	-0,641	0,792
Eutrophication Terrestrial	mol N eq	5,64	1,97	0,15	MND	0,32	0,49	0,02	0,03	-6,35	8,63
Photochemical Ozone Formation	kg NMVOC eq	1,656	0,528	0,073	MND	0,089	0,134	0,005	0,008	-3,756	2,493
ADP - Mineral And Metals *	kg Sb eq	0,00266	0,00047	0,00016	MND	0,00001	0,00045	0,00001	0,00002	-0,00096	0,00378
ADP – Fossil *	MJ	10074	607	60	MND	88	254	33	17	-7088	11133
Water Use *	m3 depriv.	154,0	2,4	20,0	MND	0,1	0,7	0,4	0,4	14,5	177,9

MND=Module Not Declared (Modulo non incluso)

^{*} The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Dati riferiti a 1000 kg di rete elettrosaldata

RISORSE RINNOVABILI	UNITÀ	A1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D	TOTALE A1÷C4
Use of renewable primary energy excluding renewable primary energy resources used as raw materials (PERE)	MJ	303,40	11,94	1,77	MND	0,36	2,43	4,25	0,14	-57,83	324,29
Use of renewable primary energy resources used as raw materials (PERM)	MJ	108,72	4,93	-0,26	MND	0,12	1,12	1,23	0,06	-55,67	115,93
Total use of renewable primary energy resources (PERT)	MJ	412,12	16,88	1,51	MND	0,48	3,56	5,48	0,20	-113,50	440,22

Dati riferiti a 1000 kg di rete elettrosaldata

RISORSE NON RINNOVABILI	UNITÀ	A1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D	TOTALE A1÷C4
Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials (PENRE)	MJ	9822,053	606,889	54,301	MND	88,220	253,716	33,289	17,307	-7088,411	10875,775
Use of non renewable primary energy resources used as raw materials (PENRM)	MJ	251,918	0,000	5,503	MND	0	0	0	0	0	257,421
Total use of non renewable primary energy resources (PENRT)	MJ	10073,925	606,868	59,803	MND	88,220	253,710	33,289	17,307	-7088,340	11133,122

Dati riferiti a 1000 kg di rete elettrosaldata

UTILIZZO DI MATERIE PRIME SECONDE	UNITÀ	A1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	СЗ	C4	D	TOTALE A1÷C4
Use of secondary materials (SM)	kg	792	0	0	MND	0	0	0	0	0	792
Use of renewable secondary fuels (RSF)	MJ	0	0	0	MND	0	0	0	0	0	0
Use of non renewable secondary fuels (NRSF)	MJ	0	0	0	MND	0	0	0	0	0	0
UTILIZZO DI ACQUA DOLCE											
Net use of fresh water (FW)	m3	4,605	0,107	0,425	MND	0,005	0,027	0,027	0,009	-0,013	5,205

Indicatori calcolati relativamente ai flussi in uscita e ai rifiuti in riferimento a 1000 kg di rete elettrosaldata

SMALTIMENTO DEI RIFIUTI	UNITÀ	A 1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	C3	C4	D	TOTALE A1÷C4
Hazardous waste disposed (HWD)	kg	0,05094	0,00118	0,00014	MND	0,00024	0,00067	0,00002	0,00004	-0,07475	0,05321
Non-hazardous waste disposed (NHWD)	kg	68,38	26,46	10,05	MND	0,11	12,04	0,12	51,77	-50,46	168,91
Radioactive waste disposed (RWD)	kg	0,0297	0,0041	0,0004	MND	0,0006	0,0017	0,0002	0,0001	-0,0064	0,0368
Components for re-use (CRU)	kg	0	0	0	MND	0	0	0	0	0	0
Materials for Recycling (MFR)	kg	0,18	0	20,03	MND	0	0	950,00	0	0	970,21
Materials for Energy Recovery (MER)	kg	0	0	0	MND	0	0	0	0	0	0
Exported Energy (EE)	MJ	0	0	0	MND	0	0	0	0	0	0

Dati riferiti a 1000 kg di traliccio

PARAMETRI O'IMPATTO AMBIENTALE	UNITÀ	A1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	СЗ	C4	D	TOTALE A1÷C4
Climate Change	kg CO2 eq	621,8	42,4	110,4	MND	6,4	16,7	1,7	0,9	-716,5	800,4
Climate Change - Fossil	kg CO2 eq	611,7	42,3	110,3	MND	6,4	16,7	1,6	0,9	-719,7	790,0
Climate Change - Biogenic	kg CO2 eq	9,9138	0,0658	0,0792	MND	0,0018	0,0090	0,0485	0,0009	3,3769	10,1190
Climate Change – LU&T	kg CO2 eq	0,2112	0,0255	0,0017	MND	0,0005	0,0059	0,0036	0,0003	-0,1286	0,2487
Ozone Depletion	kg CFC11 eq	0,0001074	0,0000086	0,0000009	MND	0,0000014	0,0000038	0,0000001	0,0000003	-0,0000287	0,000122
Acidification	mol H+ eq	2,987	0,620	0,027	MND	0,067	0,114	0,010	0,007	-3,048	3,831
Eutrophication Aquatic Freshwater	kg P eq	0,16262	0,00576	0,00094	MND	0,00023	0,00123	0,00154	0,00008	-0,26522	0,17240
Eutrophication Aquatic Marine	kg N eq	0,546	0,181	0,027	MND	0,030	0,045	0,002	0,003	-0,641	0,833
Eutrophication Terrestrial	mol N eq	6,07	2,00	0,16	MND	0,32	0,49	0,02	0,03	-6,35	9,08
Photochemical Ozone Formation	kg NMVOC eq	1,774	0,534	0,075	MND	0,089	0,134	0,005	0,008	-3,756	2,619
ADP - Mineral And Metals *	kg Sb eq	0,00265	0,00048	0,00016	MND	0,00001	0,00045	0,00001	0,00002	-0,00096	0,00378
ADP – Fossil *	MJ	10978	614	63	MND	88	254	33	18	-7088	12048
Water Use *	m3 depriv.	167,9	2,4	20,3	MND	0,1	0,7	0,4	0,4	14,5	192,2

MND=Module Not Declared (Modulo non incluso)

^{*} The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Dati riferiti a 1000 kg di traliccio

RISORSE RINNOVABILI	UNITÀ	A1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D	TOTALE A1÷C4
Use of renewable primary energy excluding renewable primary energy resources used as raw materials (PERE)	MJ	320,39	12,08	2,04	MND	0,36	2,44	4,25	0,14	-57,83	341,69
Use of renewable primary energy resources used as raw materials (PERM)	MJ	117,42	4,99	-0,07	MND	0,12	1,12	1,23	0,06	-55,67	124,88
Total use of renewable primary energy resources (PERT)	MJ	437,80	17,07	1,97	MND	0,48	3,56	5,48	0,20	-113,50	466,57

Dati riferiti a 1000 kg di traliccio

RISORSE NON RINNOVABILI	UNITÀ	A1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D	TOTALE A1÷C4
Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials (PENRE)	MJ	10722,511	613,820	57,497	MND	88,220	254,158	33,289	17,897	-7088,411	11787,392
Use of non renewable primary energy resources used as raw materials (PENRM)	MJ	254,889	0,000	5,623	MND	0	0	0	0	0	260,512
Total use of non renewable primary energy resources (PENRT)	MJ	10977,351	613,800	63,119	MND	88,220	254,153	33,289	17,896	-7088,340	12047,827

Dati riferiti a 1000 kg di traliccio

UTILIZZO DI MATERIE PRIME SECONDE	UNITÀ	A1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D	TOTALE A1÷C4
Use of secondary materials (SM)	kg	802	0	0	MND	0	0	0	0	0	802
Use of renewable secondary fuels (RSF)	MJ	0	0	0	MND	0	0	0	0	0	0
Use of non renewable secondary fuels (NRSF)	MJ	0	0	0	MND	0	0	0	0	0	0
UTILIZZO DI ACQUA DOLCE											
Net use of fresh water (FW)	m3	4,965	0,109	0,434	MND	0,005	0,027	0,027	0,009	-0,013	5,575

Indicatori calcolati relativamente ai flussi in uscita e ai rifiuti in riferimento a 1000 kg di traliccio

SMALTIMENTO DEI RIFIUTI	UNITÀ	A 1	A2	А3	A4, A5, B1 ÷ B7	C1	C2	СЗ	C4	D	TOTALE A1÷C4
Hazardous waste disposed (HWD)	kg	0,05229	0,00119	0,00014	MND	0,00024	0,00067	0,00002	0,00004	-0,07475	0,05459
Non-hazardous waste disposed (NHWD)	kg	70,42	26,77	10,22	MND	0,11	12,06	0,12	53,53	-50,46	173,22
Radioactive waste disposed (RWD)	kg	0,0323	0,0041	0,0004	MND	0,0006	0,0017	0,0002	0,0001	-0,0064	0,0395
Components for re-use (CRU)	kg	0	0	0	MND	0	0	0	0	0	0
Materials for Recycling (MFR)	kg	0,18	0	20,23	MND	0	0	950,00	0	0	970,41
Materials for Energy Recovery (MER)	kg	0	0	0	MND	0	0	0	0	0	0
Exported Energy (EE)	MJ	0	0	0	MND	0	0	0	0	0	0

Regole di calcolo

UNITÀ DICHIARATA: 1000 kg di rete elettrosaldata/traliccio

ASSUNZIONI: I confini del sistema includono i moduli obbligatori A1, A2, A3, C1, C2, C3, C4 e D previsti dallo Standard EN 15804 secondo una applicazione di tipo "from cradle to gate with modules C1-C4 and D". Si sottolinea che **non sono stati considerati la realizzazione**, **manutenzione e dismissione delle infrastrutture, intese come edifici, e l'occupazione di suolo industriale**, poiché si ritiene che il loro apporto all'impatto ambientale relativo all'unità dichiarata sia trascurabile.

Sono inclusi i consumi di oli, detergenti e altri materiali tecnici per la manutenzione delle macchine, i consumi per l'illuminazione dell'impianto, i consumi di energia per le attività dell'ufficio dove avvengono le attività di gestione dell'acciaieria. Si sottolinea inoltre che le fasi di distribuzione, uso e smaltimento del prodotto dopo l'utilizzo non sono incluse nello studio.

La quantità di rete elettrosaldata prodotta nel periodo di riferimento dello studio è di 361.944 t (Genn./Dic. 2020).

La quantità di traliccio prodotta nel periodo di riferimento dello studio è di 22.000 t (Genn./Dic. 2020).

CUT-OFF RULES: Il criterio scelto per l'inclusione iniziale degli elementi in ingresso e in uscita si basa sulla definizione di un livello di cut-off dell'1%, sia in termini di massa, energia e rilevanza ambientale. Ciò significa che un processo è stato trascurato se è responsabile di meno dell'1% della totale massa, energia primaria e impatto totale. Tuttavia tutti i processi per i quali i dati sono disponibili sono stati presi in considerazione, anche se con contributo inferiore all'1%. Di conseguenza tale valore di soglia è stato utilizzato per evitare di raccogliere dati sconosciuti, ma non per trascurare dati comunque a disposizione.

QUALITÀ DEI DATI: Nella scelta dei dati da utilizzare per lo studio di LCA sono stati privilegiati dati primari raccolti presso Ferriere Nord S.p.A. e Demolizioni Industriali S.r.I. attraverso una campagna di misure svolta negli stabilimenti.

ALLOCAZIONI: L'allocazione è stata evitata ogni qualvolta possibile dividendo il sistema in sotto-sistemi. Quando non è stato possibile evitare l'allocazione, questa è stata svolta su base economica.

Per la modellazione dei rifiuti è stato applicato il principio "Polluter pays principle".

Informazioni aggiuntive addizionali

Fin dal 1995 nel Gruppo Pittini è stato adottato come linea guida di produzione il principio "Zero Waste", un esempio virtuoso di economia circolare.

Zero Waste significa che nel Gruppo Pittini la produzione di acciaio è pensata per non generare rifiuti, le materie di scarto vengono valorizzate in modo da ridurre gli sprechi energetici e generare nuove opportunità di utilizzo.

Ne sono esempi la **Granella**®, un prodotto che si ottiene dalla scoria di acciaieria, il residuo con maggiori volumi, impiegato nella realizzazione di manti bituminosi e di conglomerati cementizi in sostituzione e alternativa agli inerti naturali, la scoria da metallurgia secondaria che viene reintrodotta nel processo come sostituto della calce, le polveri di abbattimento fumi che vengono inviati a recupero per l'estrazione dello zinco e di altri metalli, la scaglia di laminazione che viene recuperata nella produzione di cemento e di contrappesi per l'industria degli elettrodomestici.

Riferimenti

- ISO 14040:2006/Amd 1:2020 Environmental management Life cycle assessment Principles and framework
- ISO 14044:2006/Amd 2:2020 Environmental management Life cycle assessment — Requirements and guidelines — Amendment 1
- ISO 14020:2000 Environmental labels and declarations -- General principles
- EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction works
- PD CEN/TR 16970:2016 Sustainability of construction works Guidance for the implementation of EN 15804
- PD CEN/TR 15941:2010 Sustainability of construction works Environmental Product Declarations – Methodology for selection and use of generic data.
- ICMQ-001/15 PCR per i prodotti da costruzione rev.3
- Regolamento EPDItaly v.5
- Ferriere Nord S.p.A., 2022. Studio di Life Cycle Assessment di Granella, Siderlime, Tondo in barre, Tondo in rotolo Jumbo, Vergella, Ribobinato, Rete elettrosaldata e Traliccio-rev.4 10/01/2022